
4.1.1 Matrix operations 

 Sunspots come and go 
in a roughly 11-year cycle. 
Astronomers measure the 
symmetry of these cycles by 
comparing the first 4 years 
with the last 4 years. If the 
cycles are exactly symmetric, 
the corresponding differences 
will be exactly zero. 
 

 Year 1 Year 2 Year 3 Year 4 
Cycle 23 21 64 93 119 
Cycle 22 13 29 100 157 
Cycle 21 12 27 92 155 
Cycle 20 15 47 93 106 

 Year 11 Year 10 Year 9 Year 8 
Cycle 23 8 15 29 40 
Cycle 22 8 17 30 54 
Cycle 21 15 34 38 64 
Cycle 20 10 28 38 54 

 
Matrix A 
Sunspot 
numbers at 
start of cycle. 
 
 
Matrix B 
Sunspot 
numbers  at 
end of cycle 
 

Problem 1  - Compute the average of the sunspot numbers for each cycle 
according to C = (A + B)/2. 
 
 
 
 
 
Problem 2  - Compute the average difference of the sunspot numbers for 
the beginning and end of each cycle according to D = (A - B)/2. 
 
 
 
 
Problem 3 – Are the cycles symmetric? 
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Answer Key 4.1.1 
  

Problem 1  - Compute the average of the sunspot numbers for each cycle according 
to C = (A + B)/2.  Answer: 
 

21 64 93 119 8 15 29 40
13 29 100 157 8 17 30 541 1
12 27 92 155 15 34 38 642 2
15 47 93 106 10 28 38 54

C

⎛ ⎞ ⎛
⎜ ⎟ ⎜
⎜ ⎟ ⎜= +
⎜ ⎟ ⎜
⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟
⎟
⎟
⎟
⎠

 

 
14.5 39.5 61.0 79.5
10.5 23.0 65.0 105.5
13.5 30.5 65.0 219.0
12.5 37.5 65.5 80.0

C

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 
 
Problem 2  - Compute the average difference of the sunspot numbers for the 
beginning and end of each cycle according to D = (A - B)/2. 
 

 
21 64 93 119 8 15 29 40
13 29 100 157 8 17 30 541 1
12 27 92 155 15 34 38 642 2
15 47 93 106 10 28 38 54

D

⎛ ⎞ ⎛
⎜ ⎟ ⎜
⎜ ⎟ ⎜= −
⎜ ⎟ ⎜
⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟
⎟
⎟
⎟
⎠

 

 
 

6.5 24.5 32.0 39.5
2.5 6.0 35.0 66.5
1.5 3.5 27.0 45.5
2.5 9.5 27.5 26.0

D

+ + + +⎛ ⎞
⎜ ⎟+ + + +⎜ ⎟=
⎜ ⎟− − + +
⎜ ⎟
+ + + +⎝ ⎠

 

 
 
 
Problem 3 – Are the cycles symmetric? 
 
Answer:  From the values in D we can conclude that the cycles are not symmetric, and 
from the large number of positive differences, that the start of each cycle has more 
spots than the corresponding end of each cycle. 
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4.1.2 Matrix operations 

 Depending on the type of star, its 
luminosity class, and its distance from 
Earth, stars appear at many different 
brightnesses in the sky.   
 Astronomers measure star 
brightness using an ancient magnitude 
scale designed by Hipparchus that ranks 
the star by its brightness so that a First 
Ranked star with a magnitude of +1.0 is 
2.512 times brighter than a Second 
ranked star with a magnitude of +2.0. 
 

 MI MII MIII MV 
A0 -7.1 -3.1 -0.2 +0.7 
F0 -8.2 -2.3 +1.2 +2.6 
G0 -7.5 -2.1 +1.1 +4.4 
K0 -7.5 -2.1 +0.5 +5.9 

 DI DII DIII DV 
A0 +1.5 +1.5 +1.5 +1.5 
F0 +1.5 +1.5 +1.5 +1.5 
G0 +1.5 +1.5 +1.5 +1.5 
K0 +1.5 +1.5 +1.5 +1.5 

Matrix M 
Absolute 
magnitudes 
of each star 
and class 
 
 
Matrix D 
Distance 
modulus for 
each star and 
class 

Problem 1 – An astronomer wants to determine the apparent magnitude, 
A100, for each star type (A0, F0, G0 and K0) and star class (I, II, III and V) 
at a distance of 100 light years. The formula is A100 = M – 5 + 5D. What is 
the apparent magnitude matrix, A100, for these stars? 
 
 
 
 
Problem 2 – The apparent magnitudes at a distance of 1,000 light years are 
given by A1000 = A100 + 2.4. A) How bright would the stars be at this 
distance? B) How bright would a sun-like star of type G0 and class V be at 
this distance?  
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Answer Key 4.1.2 
 Problem 1 – Answer: The formula is A100 = M – 5 + 5D. What is the apparent 

magnitude matrix, A100, for these stars? 
 

7.1 3.1 0.2 0.7 1.5 1.5 1.5 1.5
8.2 2.3 1.2 2.6 1.5 1.5 1.5 1.5

100 5 5
7.5 2.1 1.1 4.4 1.5 1.5 1.5 1.5
7.5 2.1 0.5 5.9 1.5 1.5 1.5 1.5

A

− − − +⎛ ⎞ ⎛
⎜ ⎟ ⎜− − + +⎜ ⎟ ⎜= − +
⎜ ⎟ ⎜− − + +
⎜ ⎟ ⎜
− − + +⎝ ⎠ ⎝

⎞
⎟
⎟
⎟
⎟
⎠

 

 
Note: The first cell  becomes -7.1 - 5 + 5(1.5) = -4.6   and subsequent cells evaluated 
in a similar manner. 
 

4.6 0.6 2.3 3.2
5.7 0.2 3.7 5.1

100
5.0 0.4 3.6 6.9
5.0 0.4 3.0 8.4

A

− − + +⎛ ⎞
⎜ ⎟− + + +⎜ ⎟=
⎜ ⎟− + + +
⎜ ⎟
− + + +⎝ ⎠

 

 
 
 
Problem 2 – A) How bright would the stars be at this distance? B) How bright would a 
sun-like star of type G0 and class V be at this distance? 
Answer: 

2.2 1.8 4.7 5.6
3.3 2.6 6.1 7.5

1000
2.6 2.8 6.0 9.3
2.6 2.8 5.4 10.8

A

− + + +⎛ ⎞
⎜ ⎟− + + +⎜ ⎟=
⎜ ⎟− + + +
⎜ ⎟
− + + +⎝ ⎠

 

 
B) From the table, G0 is the third row and class V is the last column so the brightness 
of this star would be  +9.3 
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Matrix operations 4.1.3 
 Astronomical photography is 
based upon the design of high-tech 
cameras that use millions of 
individual sensors. The sensors 
measure the brightness of specific 
directions of the sky. This gives these 
images a pixelated appearance. 
 Astronomers manipulate digital 
images as large matrices of data. 
They operate on these image 
matrices to calibrate, correct and 
enhance the clarity and accuracy of 
the digital data. This also leads to 
some spectacular photographs too! 
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 Col. 1 Col. 2 Col.  3 Col.  4 
Row 1 64 64 64 65 
Row 2 65 66 66 84 
Row 3 67 215 67 67 
Row 4 67 68 67 67 

 The above matrix of numbers represents the intensity values that were 
measured in a region of the sky that spanned 4x4 = 16 pixels in area. Each 
number indicates the digital value that corresponds to the instrument’s voltage 
measurement in specific pixels. The astronomer wants to subtract from the 
image, I, the values in each pixel that correspond to the light from the sky, S, 
to isolate the light from the two stars in the field. He also wants to convert the 
numbers from ‘instrument numbers’ to actual brightness values of the physical 
object in the sky by using the calibration constant ‘4.5’. The end result will be a 
‘cleaned’ image, C, that is accurately calibrated so that actual astronomical 
research can be conducted. 
 
Problem 1 – The contribution from the sky has been modeled by the matrix S 
given by  
 

S = ⎜ ⎟
⎜ ⎟

 

63 63 63 63
64 64 64 64
65 65 65 65
66 66 66 66

⎛ ⎞
⎜ ⎟

⎜ ⎟
⎝ ⎠

Create a calibrated image by performing the operation  C = 4.5 x (I - S). 
 
Problem 2 - Where are the two bright stars located in the image? 



Answer Key 3.5.3 
 Problem 1 - Answer: 

 

⎟
⎟

⎛ ⎞64 64 64 65 ⎛ ⎞63 63 63 63 ⎛1 1 1 2
⎜ ⎟ ⎜ ⎟ ⎜65 66 66 84 64 64 64 64 1 2 2 20

 ⎜ ⎟  -  ⎜ ⎟  =   ⎜  
⎜ ⎟67 215 67 67 ⎜ ⎟65 65 65 65 ⎜2 150 2 2
⎜ ⎟ ⎜ ⎟ ⎜
⎝ ⎠67 68 67 67 ⎝ ⎠66 66 66 66 ⎝1 2 1 1 ⎟

⎠

⎟
⎟

⎞
⎟

 

Then C = 4.5 x   

1 1 1 2
1 2 2 20
2 150 2 2
1 2 1 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

          C  =       is the calibrated image 

4.5 4.5 4.5 9
4.5 9 9 90
9 675 9 9

4.5 9 4.5 4.5

⎛ ⎞
⎜ ⎟
⎜
⎜
⎜ ⎟
⎝ ⎠

 
 
 
 
 
Problem 2 - Where are the two bright stars located in the image? 
Answer:  The two bright stars are located in Column 2 row 3 ( '675') and column 4 
row 2 ( '90') 
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4.1.4 Matrix operations 

 U-B B-V V 
Altair +0.08 +0.22 +0.76 
Sun +0.13 +0.65 -26.7 

Antares -0.84 +1.81 +1.0 
Aludra -0.73 -0.07 +2.42 

Proxima Centauri +1.49 +1.97 +11.05 

 Astronomers measure the brightness of stars as viewed through 
different filters. In the visible spectrum, these filters are called the U, B and V 
bands. By performing simple operations on these brightnesses, measured in 
terms of stellar magnitudes, the temperature and other properties of the stars 
can be determined.  
 
Problem 1 - From the table above, create a new table that gives  the following 
information (For example, for the star Antares, V = +1.00 and B-V = +1.81 so B 
= +2.81) 
 
 U B V 

Altair   +0.76 
Sun   -26.7 

Antares  +2.81 +1.0 
Aludra   +2.42 

Proxima Centauri   +11.05 
 
Problem 2 - An astronomer wants to determine the brightness of each star in 
the three filters U, B and V by recalculating their brightness at a common 
distance of 32.6 light years (10 parsecs).  To do this, he takes the matrix 
defined by the numbers in the table in Problem 1, called D, and performs the 
following operation: N = D + S where  S is the 'shift' matrix defined by: 
 
 

S =  

1.5 1.5 1.5
31.6 31.6 31.6
5.6 5.6 5.6
9.4 9.4 9.4
4.4 4.4 4.4

+ + +⎛ ⎞
⎜ ⎟+ + +⎜ ⎟
⎜ ⎟− − −
⎜ ⎟
− − −⎜ ⎟

⎜ ⎟+ + +⎝ ⎠
 
What is the new matrix of star brightnesses N, and the corresponding new 
table? 
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Answer Key 4.1.4 
  

Problem 1 - Answer: 
 
 U B V 

Altair +1.06 +0.98 +0.76 
Sun -25.92 -26.05 -26.7 

Antares +1.97 +2.81 +1.0 
Aludra +1.62 +2.35 +2.42 

Proxima Centauri +14.51 +13.02 +11.05 
 
 
 
 
 
Problem 2 – Answer: 
 
 

 N =   +  = ⎜ ⎟  

1.06 0.98 0.76
25.92 26.05 26.7
1.97 2.81 1.0
1.62 2.35 2.42
14.51 13.02 11.05

+ + +⎛ ⎞
⎜ ⎟− − −⎜ ⎟
⎜ ⎟+ + +
⎜ ⎟
+ + +⎜ ⎟

⎜ ⎟+ + +⎝ ⎠

1.5 1.5 1.5
31.6 31.6 31.6
5.6 5.6 5.6
9.4 9.4 9.4
4.4 4.4 4.4

+ + +⎛ ⎞
⎜ ⎟+ + +⎜ ⎟
⎜ ⎟− − −
⎜ ⎟
− − −⎜ ⎟

⎜ ⎟+ + +⎝ ⎠

2.6 2.5 2.3
5.7 5.5 4.9
3.6 2.8 4.6
7.8 7.0 7.0

18.9 17.5 15.5

+ + +⎛ ⎞
⎜ ⎟+ + +⎜ ⎟
− − −

⎜ ⎟
− − −⎜ ⎟

⎜ ⎟+ + +⎝ ⎠
 
So: 
 
Table of Star Brightnesses at 32.6 light years 
 U B V 

Altair +2.6 +2.5 +2.3 
Sun +5.7 +5.5 +4.9 

Antares -3.6 -2.8 -4.6 
Aludra -7.8 -7.0 -7.0 

Proxima Centauri +18.9 +17.5 +15.5 
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4.2.1 Multiplying Matrices 

 

 Matrix multiplication is used 
when rotating the coordinates of a 
point in one coordinate system 
p(x,y,z) into another coordinate 
system p(x’, y’, z’). The general 
formula is 
                     p’ = R p 
If R represents the matrix for a 10-
degree clockwise rotation, then  
RxR represents the rotation matrix 
for a 20-degree clockwise 
rotation, and RxRxR represents a 
30-degree rotation, and so on. 

 
Problem 1 – If the rotation matrix for a 90-degree clockwise rotation is given by 
R, write the four matrix equations for the coordinates of a point P(x,y) after each 
rotation of 0, 90, 180, 270, 360 is applied, where the final coordinates are 
indicated by P’. 
 
 
 
 
 
 
Problem 2 -  The rotation matrix, R, for a 90-degree counter-clockwise rotation is 
given by 
 

⎛ ⎞0 1−
R = ⎜ ⎟  

⎝ ⎠1 0
 
What are the coordinates of the point P(+25, +15)  after each of the rotations are 
applied? 
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Answer Key 4.2.1 
 Problem 1 – If the rotation matrix for a 90-degree clockwise rotation is given by R, 

write the four matrix equations for the coordinates of a point P(x,y) after each rotation 
of 0, 90, 180, 270, 360 is applied, where the final coordinates are indicated by P’. 
 
Answer: 
 
0 degrees:      P’ = P 
 
90 degrees:    P’ = R P 
 
180 degrees:  P’ = R x R P 
 
270 degrees:  P’ = R x R x R P 
 
360 degrees:  P’ = R x R x R x R P 
 
 
 
Problem 2 -  The rotation matrix, R, for a 90-degree counter-clockwise rotation is 
given by 
 

⎛ ⎞0 1−
R = ⎜ ⎟  

⎝ ⎠1 0
 
What are the coordinates of the point P(+25, +15)  after each of the rotations are 
applied? 
 
 0 degrees:      P’ = P      so P' = (+25, +15) 
 

⎛0 1− ⎞90 degrees:    P’ = ⎜ ⎟  P   ;    P' = (-15, +25) 
⎝ ⎠1 0

 
⎛ ⎞0 1− ⎛ ⎞0 1− ⎛ ⎞−1 0

180 degrees:  P’ = ⎜ ⎟  ⎜ ⎟  P  ;  P' = ⎜ ⎟P   ;   P' = (-25, -15) 
⎝ ⎠1 0 ⎝ ⎠1 0 ⎝ ⎠0 1−

 
⎛ ⎞0 1− ⎛ ⎞0 1− ⎛ ⎞0 1− ⎛ ⎞0 1

270 degrees:  P’ = ⎜ ⎟ ⎜ ⎟ ⎜ ⎟  P ;  P' = ⎜ ⎟P    ;  P' = (+15, -25) 
⎝ ⎠1 0 ⎝ ⎠1 0 ⎝ ⎠1 0 ⎝ ⎠−1 0

 
⎛ ⎞0 1− ⎛ ⎞0 1− ⎛ ⎞0 1− ⎛ ⎞0 1−

360 degrees:  P’ = ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟P  ;   
⎝ ⎠1 0 ⎝ ⎠1 0 ⎝ ⎠1 0 ⎝ ⎠1 0
⎛ ⎞1 0

                       P' = ⎜ ⎟P  ;     P' = (+25, +15) 
⎝ ⎠0 1
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4.2.2 Multiplying Matrices 

 Although the mass of a 
body, in kilograms, does not vary, 
the quantity that we call ‘weight’  
depends on the force of gravity 
acting on the given mass.  
 
 A simple relationship using 
matrices allows us to ‘weigh’ 
different bodies at differing 
distances from the surface of 
Earth. 
 

A = 
 H=0 H=10 km H=500km 
Mercury 363 360 249 
Moon 162 160 97 
Earth 982 979 844 
Mars 374 372 284 
Acceleration units are centimeters/sec2

 
M=  
 Mass 
Golfball 0.05 
Human 70.0 
Space Station 246,000 
Mass units are kilograms 
 
Problem 1 – The weight of a body, in pounds, is given by W = 0.0022 A M, where 
A is the acceleration matrix for gravity for each of the bodies, at three different 
altitudes above the surface, and m is the mass, in kilograms, of the three test 
bodies being studies. What are the weights of each object at the corresponding 
altitudes? 
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Answer Key 4.2.2 
 Problem 1 – The weight of a body, in pounds, is given by W = 0.0022 A M, where A is 

the acceleration matrix for gravity for each of the bodies, at three different altitudes 
above the surface, and M is the mass, in kilograms, of the three test bodies being 
studies. What are the weights of each object at the corresponding altitudes? 
 

363 360 249
162 160 97
982 979 844
374 372 282

A

⎛ ⎞
⎜ ⎟
⎜=
⎜
⎜ ⎟
⎝ ⎠

⎟
⎟

⎜ ⎟
⎝ ⎠

                                                 
0.05
70.0
246,000

M
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

Acceleration units are centimeters/sec2                              Mass in kilograms 
 
 
 
W = 0.0022 A M 
 

W =  ⎜ ⎟
⎜ ⎟  

363 360 249
162 160 97

0.0022
982 979 844
374 372 282

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

0.05
70.0
246,000

⎛ ⎞

 
Example for first cell:   0.0022 (363)0.05 = 0.04 
 
So including labels: 
W = 
 H=0 H=10 km H=500km 
Mercury 0.04 55.4 134,759 
Moon 0.02 24.5 52,496 
Earth 0.1 150.8 456,773 
Mars 0.04 57.3 153,701 
Weight units in pounds. 
 
Note: At an altitude of 500 km, the object would actually be in orbit and so A = 0, which 
means that W = 0  or ‘weightless’. This is where the acceleration of gravity towards the 
center of earth is exactly equal to the local centripetal acceleration of the orbiting 
spacecraft. These oppositely-directed forces yield a net-zero acceleration so it would 
be weightless. 
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4.4.1 Solving Systems Using Inverse Matrices 

 

Although we could 
create a list of all possible 
rotation matrices for each 
possible angle, it is far more 
economical to use 
trigonometric relationships to 
make the process more 
general. 
 The four sketches to the 
left illustrate the origin of the 
various factors a, b, c and d, 
(highlighted)  that define the 
general coordinate 
transformation in Cartesian 
coordinates between (x,y) and 
(x',y') where (x,y) has been 
rotated by an angle, θ, with 
respect to (x',y'): 
 
          X' =  aX   +  bY 
         Y' =  cX   +  dY

 It is always a bit confusing, at first, to see why the 'a term' has a sign opposite to the 
others, but look at the top-right figure. The positive-y axis leans over the negative-x axis, so any 
positive value for y will be mapped into a negative number for its horizontal x-projection. That's 
why when you sum-up the parts that make up the total x' value, you get one part from the 
positive-x projection, xcos(θ), and then you have to flip the sign before you add the part from 
the positive-y projection, -ysin(θ). If you just left it as +ysin(θ), that would be geometrically 
wrong, because the positive-y axis is definitely NOT leaning to the right into the First Quadrant. 
 
Problem 1 - Write the complete rotation of (x,y) into (x',y') as two linear equations. 
 
 
Problem 2 - Write the rotation as a matrix equation X' = R(θ) X  
 
 
Problem 3 - What is the rotation matrix for a rotation of A) +90 degrees clockwise? B) + 90 
degrees counter-clockwise? C) 180-degrees clockwise? 
 
 
Problem 4 -   What is the exact rotation matrix for a rotation of 60 degrees clockwise? 
 
 
Problem 5 - What is the inverse matrix R(θ)-1? 
 
 
Problem 6 -  Show that, for all angles α and  β:  R(α) R(β)  is not the same as R(β) R(α). 
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Answer Key 4.4.1 
Problem 1  - Answer: 

x x' = cos(θ ) − y sin(θ )
                                                  

y x' s= +in(θ ) y cos(θ )
 
Problem 2 - Answer: 

⎛ ⎞x ' ⎛cos(θ θ) −sin( )⎞⎛ x ⎞
                                             ⎜ ⎟ = ⎜ ⎟⎜ ⎟  

⎝ ⎠y ' s⎝ in(θ θ) cos( ) ⎠⎝ y ⎠
Problem 3 - Answer 
 

⎛ ⎞0 1− ⎛ x ⎞ ⎛ ⎞0 1 ⎛ x ⎞ ⎛ ⎞−1 0 ⎛ x ⎞
A) R(+ =90) ⎜ ⎟⎜ ⎟    B)  R(− =90) ⎜ ⎟⎜ ⎟    C) R(+ =180) ⎜ ⎟⎜ ⎟  

⎝ ⎠1 0 ⎝ y ⎠ ⎝ ⎠−1 0 ⎝ y ⎠ ⎝ ⎠0 1− ⎝ y ⎠
 
Problem 4 -   Answer: For exact answers, do not evaluate fractions or square-roots: 

⎛ ⎞1 3
⎜ ⎟−

⎛ ⎞cos(60) −sin(60) 2 2R(+ =60) = ⎜ ⎟⎜ ⎟  
⎝ ⎠sin(60) cos(60) ⎜ ⎟3 1

⎜ ⎟
⎝ ⎠2 2

Problem 5 - Answer:  
⎛ ⎞cos(θ ) −sin(θ ) −1 1 ⎛ cos( ) sin( )

R R(θ θ) = =⎜ ⎟           ( ) 2 2 ⎜  
⎝ ⎠sin(θ ) cos(θ ) cos (θ θ) + sin ( ) ⎝ −sin( ) cos( )

θ
θ

⎞
⎟
⎠

θ
θ

 
⎛ ⎞cos(θ ) sin(θ )

So R( )θ −1 = ⎜ ⎟      
⎝ ⎠−sin(θ ) cos(θ )

 
 Problem 6 -  Show that, for all angles α and  β:  R(α) R(β)  is not the same as R(β) R(α). 

⎛ ⎞cos(α α) s− −in( ) ⎛cos(β ) sin(β )⎞R R( ) (α β ) = ⎜ ⎟⎜ ⎟
⎝ ⎠sin(α α) cos( ) ⎝ sin(β ) cos(β ) ⎠  
⎛ cos(α ) cos(β α) − −sin( )sin(β ) cos(α )sin(β α) − sin( ) cos(β )

                  = ⎜
⎝sin(α ) cos( )β α+ −cos( )sin( )β sin(α )sin( )β α+ cos( )cos( )β

 
⎛ ⎞cos(β β) − −sin( ) ⎛cos(α ) sin(α )⎞R R( )β α( ) = ⎜ ⎟⎜ ⎟
⎝ ⎠sin(β β) cos( ) ⎝ sin(α ) cos(α ) ⎠  
⎛ cos(α ) cos(β α) − −sin( )sin(β ) sin(α ) cos(β ) − cos(α )sin(β )

                  = ⎜
⎝cos(α )sin(β α) + −sin( ) cos(β ) sin(α )sin(β ) + cos(α ) cos(β )

⎞
⎟
⎠

⎞
⎟
⎠

 
Although the diagonal terms are symmetric in α and β, the off-diagonal terms are not. 
This demonstrates that rotation matrices do not commute under multiplication so that in 
general AB does not equal BA. The order of operation is important in matrix mathematics. 
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4.4.2 Identity and Inverse Matrices 

Astronomers often take dozens, or 
even thousands of digital images of the 
same region of the sky in order to 'add them 
up' and detect very faint objects. This 
'stacking' of images requires that the same 
pixels be added together to form the 
average. This can be a problem if the 
telescope, or satellite, is in motion.  
 One kind of motion is called pure 
rotation. Every image is tagged by its 
orientation angle so that, when the image is 
later processed, it can be properly averaged 
into the other images in the stack.  
 Suppose that the address of a pixel 
in the stacked image is given by (X',Y') and 
the address of the corresponding pixel in 
the raw image is (X,Y) observed at an 
angle, θ, with respect to the stacked image 
coordinates. The relationship between the 
two coordinate systems is just: 
 
             X' = X cos(θ) - Y sin(θ) 
           Y' = X sin(θ) + Y cos(θ) 

 
Images taken by the 2MASS sky survey.  
(Left) Raw image exposed for 8 seconds. 
(Right) 2,050 raw images stacked and 
      averaged together to detect fainter stars. 

Problem 1 -  An astronomer wants to combine the data from pixel 
P(x,y)=(245,3690) in a raw image, with the averaged data in the stacked image. 
What will be the 'destination' address of the data pixel in the stacked image, 
P(x',y') if the data in the raw image is rotated 5 degrees clockwise relative to the 
stacked image? (Note: It is helpful to draw a picture to keep track of P and P') 
 
 
Problem 2 - An astronomer wants to add an additional raw image to an image 
stack of 25 images, where the raw image pixels have the following intensities:  
 
             P(497,1030)=90.0                  P(497,1031) = 85.0    
             P(498,1030)=35.0                  P(498,1031) = 20.0 
 
A) For what rotation angle do these four raw pixels coincide with the stacked 
pixels whose intensities are:  
 
             S(358,1086) = 93.5                S(358,1087) = 87.2 
             S(359,1086) = 32.4                S(359,1087) = 21.2 
 
B) What will be the new averages for the stacked image pixels? 
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Answer Key 4.4.2 
 Problem 1 -  Answer:  

                X' = (245) cos(5) - (3690)sin(5) =   244.1 - 321.6 =  -77.5 = -77 
             Y' = (245)sin(5) + (3690)cos(5) = 21.4 + 3676.0 =  3697.4 = 3697. 
 
So the data from P(245,3690) in the raw image should be placed in pixel P'(-77,3697) 
in the stacked image. 
 
 
Problem 2 - Answer: A) Students should realize that this represents solving a system 
of 2 equations in two unknowns 'sin(θ)' and 'cos(θ)'. Set up the equations as follows 
using any of the corresponding coordinate pairs P and S: 
 
                              358 =    497 cos(θ) - 1030 sin(θ) 
                            1086 =  1030 cos(θ) + 497 sin(θ)  
 
As a matrix equation: 
 
⎛ ⎞358 ⎛ 497 −1030⎞⎛cos(θ )⎞
⎜ ⎟ = ⎜ ⎟⎜ ⎟  
⎝ ⎠1086 ⎝1030 497 ⎠⎝sin(θ ) ⎠
 

The inverse matrix is  1 ⎛ ⎞497 1030 ⎛ 0.000379 0.000788
(497)2 2 ⎜ ⎟ = ⎜  

+ (1030) ⎝ ⎠− −1030 497 ⎝ 0.000788 0.000379
⎞
⎟
⎠

 

Then  
0.000379 0.000788 358 sin( )
0.000788 0.000379 1086 cos( )

θ
θ

⎛ ⎞⎛ ⎞
=⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

   

 
So cos(θ) =  0.1357+0.856 = 0.9917       or sin(θ)=  -0.2821 + 0.4116= 0.1295 
So either way,  θ =  7.4 degrees.  Answers near 7.5 degrees are acceptable.  
 
B)  You have to do a weighted average: 
 
S(358,1086) = (93.5*25 + 90.0)/26 = 93.4             
S(358,1087) = (87.2*25 + 85.5)/26 = 87.1 
S(359,1086) = (32.4*25 +  35.0)/26= 32.5              
S(359,1087) = (21.2*25 + 20.0)/26 = 21.1 
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4.5.1 Solving Systems Using Inverse Matrices 

          Solving a system of three equations in 
three unknowns can commonly be found in 
several space science and astronomy 
applications.  
 
           Solar flares are a frequent phenomenon 
on the sun, especially during the peaks of solar 
activity cycles. Over 21,000 can occur during an 
average solar cycle period of 11 years! In our 
first problem, you will determine the average 
intensity of three classes of flares ('C', 'M' and 
'X') by using statistical information extracted 
from three solar activity (sunspot!) cycles. 
 
During February 4 - 6, 2000 the peak month of 
Cycle 23 solar scientists tallied 37 C-class, 1 M-
class and 1 X-class flares, for a total x-ray 
intensity of 705 mFU ( 1 mFU = 10-6 watts/m2) . 
 
During March 4 - 6, 1991 scientists tallied 15 C-
class, 14 M-class and 4 X-class flares for a total 
x-ray intensity of 2775  mFU 
 
During  April 1 - 3, 2001 scientists tallied 5 C-
class,  9  M-class and  4 X-class flares for a 
total x-ray intensity of 2475 mFU. 

 

 
 

Problem 1:  Use the above data to create a system of equations, solve them, and 
determine the average intensity of flares, to the nearest tenth, in each category (C, M 
and X) in units of mFU. 
 

Space Math                                                    http://spacemath.gsfc.nasa.gov 
 



4.5.1 
Answer Key: 
 
 
 
 
 
 

After setting up the problems as a matrix, you might want to use the spiffy online 
matrix calculator at                                                         
 http://www.bluebit.gr/matrix-calculator/ 
 
Problem 1:  
 
The system of equations is 
 31 C  +  1  M  +  1  X  =  705 
              15 C  +  14 M  + 4  X  = 2775 
               5 C   +   9  M  + 4  X  = 2475 
 
Matrix: 
                31    1    1 
                15   14   4 
                 5     9    4 
 
Inverse: 
                0.031    0.008    -0.016 
              -0.062    0.184    -0.169 
               0.101   -0.425     0.650 
 
 
Solution: 
              C :       0.031 x 705  + 0.008 x 2775  -0.016 x 2475    =     4.5 mFU 
              M:       -0.062 x 705  + 0.185 x 2775  -0.169 x 2475   =     51.4 mFU 
              X:        0.101 x 705 -0.425 x 2775  +0.650 x 2475      =    500.2 mFU 
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4.5.2 Solving Systems Using Inverse Matrices 

          Solving a system of three equations in 
three unknowns can commonly be found in 
several space science and astronomy 
applications.  
 
          Communications satellites use electrical 
devices called transponders to relay TV and 
data transmissions from stations to satellite 
subscribers around the world.  
 
 There are two basic types: K-band 
transponders operate at frequencies of 11-15 
GHz and C-band transponders operate at 3-7 
GHz.  
 
 Satellites come in a variety of standard 
models, each having its own power 
requirements to operate its pointing and 
positioning systems.  The following satellites 
use the same satellite model: 
  
 

 

Satellite 1 :     Anik F1   
              Total power = 15,000 watts 
 Number of K-band transponders =  48 
 Number of C-band transponders =  36 
 
Satellite 2 :    Galaxy IIIc 
              Total power =  14,900 watts 
 Number of K-band transponders =  53 
 Number of C-band transponders =  24 
 
Satellite 3 :   NSS-8  
              Total power =  16,760 watts 
 Number of K-band transponders =  56 
 Number of C-band transponders =  36 
 
 
Problem 1:  Use the data  to determine the average power, to the nearest 
integer, of a K-band and a C-band transponder, and the satellite operating 
power, F, in watts. 
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4.5.2 
Answer Key: 
 
 
 
 
 
 

After setting up the problems as a matrix, you might want to use the spiffy online 
matrix calculator at                                                          
 
http://www.bluebit.gr/matrix-calculator/ 
 
 
Problem 1.  Solving for satellite transponder power, K and C,  and satellite operating 
power, F using 3 equations in three variables. From the satellite data 
                         48 K + 36 C + F =  15,000 
                         53 K + 24 C + F =  14,900 
                         56 K + 36 C + F =  16,760 
 
Matrix:        48  36  1 
                    53  24  1 
                    56  36  1 
 
Inverse:      -0.125     0.0       0.125 
       0.031   -0.083    0.052 
       5.875     3.00    -7.875 
 
 
Solution =    -0.125 x 15000 + 0.125 x 16,760 =  K   =   220 watts  per K-band 
transponder 
 
 0.031 x 15000 - 0.083 x 14,900 + 0.052 x 16,760 = C  =  100 watts  per C-
band transponder 
 
              5.875 x 15000 + 3 x 14,900 - 7.875 x 16,760 = F   = 840 watts for the 
satellite operating power 
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4.5.3 Solving Systems Using Inverse Matrices 

⎛ ⎞1 0 1 0I = ⎜ ⎟ 1

⎝ ⎠0 1     I − ⎛
= ⎜   
⎝0 1

 
 

⎛ ⎞0 1−
− 0 1A = ⎜ ⎟     A 1 ⎛
= ⎜  

⎝ ⎠1 0 ⎝−1 0
 
 

⎛ ⎞0 1
−1 ⎛0 1−B = ⎜ ⎟     B = ⎜  

⎝ ⎠−1 0 ⎝1 0
 
 

⎛ ⎞−1 0 1 0C = ⎜ ⎟     C−1 ⎛−
= ⎜  

⎝ ⎠0 1− ⎝ 0 1−
 

⎞
⎟
⎠

⎞
⎟
⎠

⎞
⎟
⎠

⎞
⎟
⎠

Rotation matrices are a basic mathematical 
ingredient to photo imaging software (PaintShop, 
Adobe Illustrator, etc). A typical software menu lets 
you select by what angle you want to rotate an image. 
Because satellites spin, and spacecraft have to 'roll' 
or 'pitch' or 'yaw' to change their orientation in space, 
rotation matrices are a vital ingredient to space 
science. 
 In this problem, we are going to explore the 
properties of rotation matrices in 2-dimensions. Think 
of this as studying what happens to images in the x-y 
plane as they are rotated clockwise or counter-
clockwise about the z-axis. 
 The original image has pixels arranged in a 
rectangular grid along the x and y axis denoted by the 
coordinate pairs (x,y). The final, rotated, image has a 
new set of pixel coordinates denoted by (x', y'). The 
matrix equation that relates the old and new 
coordinates is just 
 

           ⎛ ⎞x ' ⎛a b ⎞⎛ x ⎞ ⎜ ⎟ = ⎜ ⎟⎜ ⎟      
⎝ ⎠y ' ⎝ c d ⎠⎝ y ⎠

   or      X' = RX  

 
For the simple case of 90-degree rotations, the 
rotation matrices, R, are shown to the left, along with 
their inverses.

Problem 1 - In terms of the initial (x,y) and final (x',y') coordinates, describe what each of 
the rotation matrices I, A, B and C does. 
 
 
Problem 2 - For each matrix, I, A, B and C, what is the physical interpretation of the 
corresponding inverse matrix? 
 
 
Problem 3 -  Show that the matrix equation AB correctly represents a rotation of A 
followed by a rotation of B, but that the equation A + B does not. 
 
 
Problem 4 -  Compute the final result of AA-1 and explain what happens physically. What 
is a general rule relating a rotation matrix and its inverse? 
 
 
Problem 5 - A spacecraft undergoes a complex series of rotations while moving to its 
next target to observe. The sequence of rotations is represented by ABA-1CB-1. How is 
the final coordinate system (x',y') related to the initial one (x,y) after the moves are 
completed? 
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Answer Key 4.5.3 
 Problem 1 - Answer: X' = I X    yields   (x',y') = (x,y)      Rotates (x,y) by zero degrees 

             X' = AX     yields  (x',y') = (-y,x)      Rotates (x,y) by 90 degrees clockwise 
             X' = BX     yields  (x',y') = (y,-x)      Rotates (x,y) by  90 degrees counter-clockwise 
             X' = CX    yields   (x',y') = (-x,-y)     Rotates (x,y) by 180 degrees clockwise 
 
Problem 2 - Answer: X' = I-1 X    yields  (x',y') = (x,y)       Rotates (x,y) by zero degrees 
             X' = A-1X     yields  (x',y') = (y,-x)      Rotates (x,y) by 90 degrees counter-clockwise 
             X' = B-1X     yields  (x',y') = (-y,x)      Rotates (x,y) by  90 degrees clockwise 
             X' = C-1X    yields   (x',y') = (-x,-y)     Rotates (x,y) by 180 degrees counter-clockwise 
 
Problem 3 -  Answer: 
 

⎛ ⎞0 1− −⎛ ⎞0 1 ⎛ −1 0
AA = ⎜ ⎟⎜ ⎟ ⎜    i

⎝ ⎠1 0 ⎝ ⎠1 0 ⎝ 0 −1
=

⎞
⎟
⎠

− ⎞
⎟
⎠

=

−

mplies two 90-degree clockwise rotations so  

(x',y') = (-x,-y) This is equivalent to 1, 180-degree clockwise rotation and so AA = C 
 

⎛ ⎞0 1− −⎛ ⎞0 1 ⎛0 2
A A+ = ⎜ ⎟ + ⎜ ⎟ = ⎜     

⎝ ⎠1 0 ⎝ ⎠1 0 ⎝2 0
which is the same as 2A so that (x',-y') = (2x,-2y) = 

2(x,-y) and is not a rotation. 
 

Problem 4 -  Answer   A rotation of 90 clockwise 

followed by a rotation of 90 degrees counter-clockwise leaves the coordinates unchanged. 
The inverse rotation matrices represent the corresponding rotation matrix with the sign of the 
angle reversed.  

− 0 1
: 1 ⎛ ⎞− ⎛ ⎞0 1 ⎛1 0⎞AA = ⎜ ⎟⎜ ⎟ ⎜ ⎟ I   

⎝ ⎠1 0 ⎝ ⎠−1 0 ⎝0 1⎠
=

 
Problem 5 - Write out the matrix products and evaluate from left to right: 

− −1 1 −1 ⎛ ⎞0 − −1 ⎛ ⎞0 1 ⎛ ⎞0 1 ⎛ 1 0 ⎞⎛ ⎞0 1
ABA CB CC B = ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟  

⎝ ⎠1 0 ⎝ ⎠− −1 0 ⎝ ⎠1 0 ⎝ 0 −1⎠⎝ ⎠1 0
⎛1 0⎞⎛ ⎞0 1 ⎛ −1 0 ⎞⎛ ⎞0 −1

                             = ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟  
⎝0 1⎠⎝ ⎠− −1 0 ⎝ 0 1⎠⎝ ⎠1 0
⎛ ⎞0 1 ⎛− −1 0 ⎞⎛ ⎞0 1

                             = ⎜ ⎟⎜ ⎟⎜ ⎟  
⎝ ⎠− −1 0 ⎝ 0 1⎠⎝ ⎠1 0
⎛ ⎞0 1− −⎛ ⎞0 1

                             = ⎜ ⎟⎜ ⎟  
⎝ ⎠1 0 ⎝ ⎠1 0
⎛ ⎞−1 0

                             = ⎜ ⎟  
0 1−⎝ ⎠

So (x',y') = (-x,-y) and this is just a rotation by 180 degrees from the original (x,y). 
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4.5.4 Solving Systems Using Inverse Matrices 

Matrix mathematics 
can be used to balance 
chemical reaction equations. 
Although this can be a 
tedious, but often entertaining, 
process for humans, it can be 
automated and 'solved' by 
using a computer program and 
matrix math. The example to 
the left shows the steps.  
 First re-write the 
equation with only one 
compound on the right-hand 
side.  
 Next, separate the 
chemical equation into one 
equation for each element.  
 Then create the two 
arrays, A and B, and compute 
the determinant of A.  
 Finally, solve the 
matrix equation for w, x, y and 
z taking the Absolute Values 
of all numbers and rounding 
them to the nearest integer. 

_w_MgO   +  _x_Fe       _y_Fe2O3   +  _z_Mg 
 
Mg:    1 w   + 0 x  + 0 y =  1 z 
Fe:     0 w   + 1 x  -  2 y  =  0 z 
O:      1 w   + 0 x  -  3 y  =  0 z 
 

⎛ ⎞1, 0,  0
⎜ ⎟    ⎜

1⎛ ⎞
⎟

0, 1, -2 B =    det(A)=3 A = 0⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠1, 0,  3 ⎝ ⎠0

 
⎛ ⎞w
⎜ ⎟x A= −1B (det(A))     ⎜ ⎟
⎜ ⎟
⎝ ⎠y
 
so w=3, x=2, y=1   and    z=det(A)=3 
 
3MgO   +  2Fe       1Fe2O3   +  3Mg 
 

Problem 1 - What integers will 'balance' the chemical reaction describing the 
combustion of gasoline in a car engine as follows: 
 
                          ___ C8H18 + ___ O2   ___ CO2  +  ___ H2O 
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